SMF: soft x-ray spectromicroscopy facility for material research

-objective:

an understanding of the nanoscale origin of macroscopic (electrical, magnetic and optical) properties of the matter, and the evolution of the system under relevant conditions

-scope of the proposal:

Combination of the scanning and full field transmission x-ray microscopes (reaching 10nm performance) and the photoelectron and photon inelastic emission SR microscope (~5meV spectral resolution) as a tool for break thru study in complex materials, nano electronics, process of self assembly and energy storage

-proponent group:

Konstatine Kaznatcheev, spokesperson, NSLSII, BNL, (kaznatch@bnl.gov)

Adam P. Hitchcock, professor, Chemistry and Chemical Biology, Brockhouse Institute for Materials Research, McMaster U, (aph@mcmaster.ca)

Antony Warwick, ALS experimental group deputy, LBNL, Berkeley, (t_warwick@lbl.gov)

Alexei Fedorov, staff scientist, ALS, LBNL, Berkeley, (avfedorov@lbl.gov)

Dario Arena, staff scientist, NSLSII, BNL, (darena@bnl.gov)

Evgueni Nazaretski, nanopositioning group leader, NSLSII, BNL, (enazaretski@bnl.gov)

Eli Rotenberg, ALS scientific group deputy, LBNL, Berkeley, (erotenberg@lbl.gov)

Elio Vescovo, ESM leader, BNL, (evescovo@bnl.gov))

Peter Fischer, staff scientist, CXRO, LBNL, Berkeley, (pjfischer@lbl.gov)

Oleg Gang, soft matter group leader, CFN, BNL, (ogang@bnl.gov)

Oleg Lavrentovich, professor, Director of LCI, Kent University, (olavrent@kent.edu)

Tolek Tyliszczak, staff scientist, ALS, LBNL, Berkeley, (tolek@lbl.gov)

Yi-De Chuang, staff scientist, ALS, LBNL, Berkeley, (ychuang@lbl.gov)

William Bailey, professor, Material Science, Columbia University, (web54@columbia.edu)

workshop/ meeting on May 20/10

nES: nEw Science

two branches with complimentary scientific mission:

- "at operando" condition
- role of interface formation
- inhomogeneous (polycrystalline) compounds
- distribution of electrostatic potential
- direct measurements of "electron conductivity

•novel materials and functional devices:

- competing crystallographic phases
- near Fermi-level electrons: correlations and interactions
- electron driven transition
- charge, spin, orbital ordering

strong correlation materials: competing phases

•superconductivity: vortex formation

STXM (transmission, NEXAFS)

- ·use light polarization for observing relevant features as small as 15nm on the surface and in the bulk simultaneously
- at relevant conditions

STXM, vortex 2 μm⁻¹ (a) 284 STXM, **MWCN** magnetic phenomena

Chemical component images of the catalyst particle, showing the spatial distribution of the different iron species at 450C.

catalysis and the material for energy storage

Experimental Technique: nano-ARPES/RIXS

SR spectroscopy at its best

Sample environment

- cryostat top off-centerd, sample bottom thru T bridge, sample load form the back
- cryo-stages, three angles+scanner plus along the beam translation (?warm), interferometer
- Temperature: LHeT (~25K)->600C
- UHV (<10⁻⁹torr)
- *m* shielding
- ?complimentary techniques ?crystal (cleavage) orientation
- · preparation chamber

high resolution soft xray mono (40-1000eV)

Scienta R4000 (200mm hemi-sphere)

- · ?vertical e- dispersion plane, only vertical movement
- Energy resolution: < 1.8 meV FWHM at 2 eV pass energy and 20 eV kinetic energy
- Pass energies: 1, 2, 5, 10, 20, 25, 50, 100 and 200 eV
- Transmission mode lens acceptance: +/- 19 degrees
- Angular modes: ± 3.5°, ± 7°, ± 15°,
- Angular resolution < 0.1 degree from < 0.1 mm sample
- Kinetic energy range: 0.5 eV 1500 eV
- · Working distance: 34 mm

- * spatially resolved ARPES/ RIXS branch would aid the study of fine structure (~5meV) near Fermi edge band renormalization in nanocompounds and origin of electronic excitation in novel materials
- * compliment each other: conductive vs. insulating; below and above E_f,
- * a gain associated with ultra high brightness of NSLSII will be further multiplied by
- -unprecedented luminosity of ZPbased RIXS spectrometer (NA at least 10² higher that of existed design)
- -state of the art performance of KB pair (to reach 100nm focus at full flux)
- -large angle coverage fast x-ray CCD detector coupled with high on sample flux (10¹¹ph/s/bw) extend detection to ~10nm

Experimental Technique: TXM/ STXM

SR microscopy at its best

- * High resolution (~10nm) TXM and STXM ideally suite to study time evolution of complex system at operando conditions
- * fast acquisition TXM is ideal for large data set (such as tomography or time evolution sequence) where complimentary channels detected by STXM (e⁻, fluorescence) facilitate cross correlation analysis
- * total control over x-ray polarization extends chemical speciation map to orientation of molecules or magnetic moment
- -high flux provided by NSLSII ID is necessary:
- -to reach ~10nm performance in TXM with real time acquisition
- -to increase STXM detection limit at spatial resolution beyond ZP NA

Facility layout

- * Optical design provides good layout and space sharing between TXM, STXM and ARPES/ RIXS stations
- * Independent operation of high (spectroscopy) and moderate (imaging) resolution branches
- * Engineering can be firmly based on a combination of existed (ALS-PGM, TXM, STXM) and novel (ZP spectrometer, TXM condenser, cryo-stages) technical solutions. Proponent group has an extended expertise and can confidently guide the project
- * The quality of optical components is within the reach